设为首页收藏本站

绿色BI论坛商业智能大数据交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 59|回复: 0

NLPIR语义技术深度挖掘数据信息

[复制链接]
发表于 2017-11-14 15:11:09 | 显示全部楼层 |阅读模式
 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。
  在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。
  数据挖掘(Data mining,简称DM)从狭义上是指从数据库中提取知识。具体的说是在数据库中,对数据进行一定的处理,从而获得其中隐含的、事先未知的而又可能极为有用的信息。这些信息通常是以知识、规则或约束等形式来表现。在其他文献中有许多类似的提法,例如:数据分析,知识获取,知识萃取,数据构成等。数据挖掘方法在数据库系统和人工智能领域是一个新方向。这里所说的知识是指大量数据中存在的规律性(regularity)或不同特征属性值之间所存在的规则。
  从大量数据中获取知识有两个层次的含义:首先,与科学发现有关。从观测客观世界的大量实验数据(往往是数值)中发现数据的整体结构特性和数据之间的函数关系,并根据统计特征推断客观世界中存在的规律性;其次,与商业数据等事实数据所构成的数据库中发现其中隐含的规则或规律性有关。第二类是将人工智能技术与数据库理论相融合的应用性研究课题。
  NLPIR文本搜索与挖掘系统针对互联网内容处理的需要,融合了自然语言理解、网络搜索和文本挖掘的技术,专门针对原始文本集进行处理和加工,提供了用于技术二次开发的基础工具集。开发平台由多个中间件组成,各个中间件API可以无缝地融合到客户的各类复杂应用系统之中,适应于众多应用场景。
大数据语义分析开启“智能预测客户”时代.png
  NLPIR文本搜索与挖掘开发平台的十二大功能:
  1. 全文精准检索:支持文本、数字、日期、字符串等各种数据类型,多字段的高效搜索,支持AND/OR/NOT以及NEAR邻近等查询语法,支持维语、藏语、蒙语、阿拉伯、韩语等多种少数民族语言的检索。可以无缝地与现有文本处理系统与数据库系统融合。
  2. 新词发现:从文件集合中挖掘出内涵的新词语列表,可以用于用户专业词典的编撰;还可以进一步编辑标注,导入分词词典中,从而提高分词系统的准确度,并适应新的语言变化。
  3. 分词标注:对原始语料进行分词、自动识别人名地名机构名等未登录词、新词标注以及词性标注。并可在分析过程中,导入用户定义的词典。
  4. 统计分析与术语翻译:针对切分标注结果,系统可以自动地进行一元词频统计、二元词语转移概率统计(统计两个词左右连接的频次即概率)。针对常用的术语,会自动给出相应的英文解释。
  5. 文本聚类及热点分析:能够从大规模数据中自动分析出热点事件,并提供事件话题的关键特征描述。同时适用于长文本和短信、微博等短文本的热点分析。
  6. 分类过滤:针对事先指定的规则和示例样本,系统自动从海量文档中筛选出符合需求的样本。
  7. 正负面分析:针对事先指定的分析对象和示例样本,系统自动从海量文档中筛选出正负面的得分和句子样例。
  8. 自动摘要:能够对单篇或多篇文章,自动提炼出内容的精华,方便用户快速浏览文本内容。
  9. 关键词提取:能够对单篇文章或文章集合,提取出若干个代表文章中心思想的词汇或短语,可用于精化阅读、语义查询和快速匹配等。
  10. 文档去重:能够快速准确地判断文件集合或数据库中是否存在相同或相似内容的记录,同时找出所有的重复记录。
  11. HTML正文提取:自动剔除导航性质的网页,剔除网页中的HTML标签和导航、广告等干扰性文字,返回有价值的正文内容。适用于大规模互联网信息的预处理和分析。
  12. 编码自动识别与转换:自动识别内容的编码,并把编码统一转换为GBK编码。
  数据挖掘技术是一个发展十分快的领域,可涉及到广泛的领域,主要包括数据库系统,基于知识的系统,人工智能,机器学习,知识获取,统计学,空间数据库和数据可现化等领域。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

手机版|使用帮助|绿色BI论坛商业智能大数据交流社区 ( 粤ICP备09215901号-2   

点击这里给我发消息

粤公网安备 44049102496016号

GMT+8, 2017-11-25 15:34 , Processed in 1.138802 second(s), 25 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表